Exploiting genotyping by sequencing to characterize the genomic structure of the American cranberry through high-density linkage mapping

Publication Overview
TitleExploiting genotyping by sequencing to characterize the genomic structure of the American cranberry through high-density linkage mapping
AuthorsCovarrubias-Pazaran G, Diaz-Garcia L, Schlautman B, Deutsch J, Salazar W, Hernandez-Ochoa M, Grygleski E, Steffan S, Iorizzo M, Polashock J, Vorsa N, Zalapa J
TypeJournal Article
Journal NameBMC genomics
Volume17
Issue1
Year2016
Page(s)451
CitationCovarrubias-Pazaran G, Diaz-Garcia L, Schlautman B, Deutsch J, Salazar W, Hernandez-Ochoa M, Grygleski E, Steffan S, Iorizzo M, Polashock J, Vorsa N, Zalapa J. Exploiting genotyping by sequencing to characterize the genomic structure of the American cranberry through high-density linkage mapping. BMC genomics. 2016; 17(1):451.

Abstract

BACKGROUND
The application of genotyping by sequencing (GBS) approaches, combined with data imputation methodologies, is narrowing the genetic knowledge gap between major and understudied, minor crops. GBS is an excellent tool to characterize the genomic structure of recently domesticated (~200 years) and understudied species, such as cranberry (Vaccinium macrocarpon Ait.), by generating large numbers of markers for genomic studies such as genetic mapping.

RESULTS
We identified 10842 potentially mappable single nucleotide polymorphisms (SNPs) in a cranberry pseudo-testcross population wherein 5477 SNPs and 211 short sequence repeats (SSRs) were used to construct a high density linkage map in cranberry of which a total of 4849 markers were mapped. Recombination frequency, linkage disequilibrium (LD), and segregation distortion at the genomic level in the parental and integrated linkage maps were characterized for first time in cranberry. SSR markers, used as the backbone in the map, revealed high collinearity with previously published linkage maps. The 4849 point map consisted of twelve linkage groups spanning 1112 cM, which anchored 2381 nuclear scaffolds accounting for ~13 Mb of the estimated 470 Mb cranberry genome. Bin mapping identified 592 and 672 unique bins in the parentals and a total of 1676 unique marker positions in the integrated map. Synteny analyses comparing the order of anchored cranberry scaffolds to their homologous positions in kiwifruit, grape, and coffee genomes provided initial evidence of homology between cranberry and closely related species.

CONCLUSIONS
GBS data was used to rapidly saturate the cranberry genome with markers in a pseudo-testcross population. Collinearity between the present saturated genetic map and previous cranberry SSR maps suggests that the SNP locations represent accurate marker order and chromosome structure of the cranberry genome. SNPs greatly improved current marker genome coverage, which allowed for genome-wide structure investigations such as segregation distortion, recombination, linkage disequilibrium, and synteny analyses. In the future, GBS can be used to accelerate cranberry molecular breeding through QTL mapping and genome-wide association studies (GWAS).

Features
This publication contains information about 1,617 features:
Feature NameUniquenameType
scaffold_34688_1347scaffold_34688_1347genetic_marker
scaffold_34702_2366scaffold_34702_2366genetic_marker
scaffold_34903_1018scaffold_34903_1018genetic_marker
scaffold_35265_2899scaffold_35265_2899genetic_marker
scaffold_35493_2993scaffold_35493_2993genetic_marker
scaffold_35493_3144scaffold_35493_3144genetic_marker
scaffold_35889_2207scaffold_35889_2207genetic_marker
scaffold_36_10300scaffold_36_10300genetic_marker
scaffold_36_17287scaffold_36_17287genetic_marker
scaffold_36_17330scaffold_36_17330genetic_marker
scaffold_36026_1634scaffold_36026_1634genetic_marker
scaffold_3612_3319scaffold_3612_3319genetic_marker
scaffold_36157_874scaffold_36157_874genetic_marker
scaffold_36218_1323scaffold_36218_1323genetic_marker
scaffold_36380_433scaffold_36380_433genetic_marker
scaffold_36494_3163scaffold_36494_3163genetic_marker
scaffold_36500_3209scaffold_36500_3209genetic_marker
scaffold_3671_8064scaffold_3671_8064genetic_marker
scaffold_3679_2742scaffold_3679_2742genetic_marker
scaffold_36869_918scaffold_36869_918genetic_marker
scaffold_36886_1616scaffold_36886_1616genetic_marker
scaffold_36895_1614scaffold_36895_1614genetic_marker
scaffold_3698_12740scaffold_3698_12740genetic_marker
scaffold_37124_691scaffold_37124_691genetic_marker
scaffold_37308_1692scaffold_37308_1692genetic_marker

Pages

Featuremaps
This publication contains information about 1 maps:
Map Name
Cranberry-[BGx(BLxNL)]95_x_ GH1x35-F1
Stocks
This publication contains information about 4 stocks:
Stock NameUniquenameType
#35#35accession
[BGx(BLxNL)]95[BGx(BLxNL)]95accession
[BGx(BLxNL)]95_x_ GH1x35-F1[BGx(BLxNL)]95_x_ GH1x35-F1population
GH1_x_#35GH1_x_#35population
Properties
Additional details for this publication include:
Property NameValue
Publication ModelElectronic
ISSN1471-2164
eISSN1471-2164
Publication Date2016
Journal AbbreviationBMC Genomics
DOI10.1186/s12864-016-2802-3
Elocation10.1186/s12864-016-2802-3
Journal CountryEngland
LanguageEnglish
Language Abbreng
Publication TypeJournal Article