Construction of a High-Density American Cranberry (Vaccinium macrocarpon Ait.) Composite Map Using Genotyping-by-Sequencing for Multi-pedigree Linkage mapping

Publication Overview
TitleConstruction of a High-Density American Cranberry (Vaccinium macrocarpon Ait.) Composite Map Using Genotyping-by-Sequencing for Multi-pedigree Linkage mapping
AuthorsSchlautman B, Covarrubias-Pazaran G, Diaz-Garcia L, Iorizzo M, Polashock J, Grygleski E, Vorsa N, Zalapa J
TypeJournal Article
Journal NameG3 (Bethesda, Md.)
Year2017
CitationSchlautman B, Covarrubias-Pazaran G, Diaz-Garcia L, Iorizzo M, Polashock J, Grygleski E, Vorsa N, Zalapa J. Construction of a High-Density American Cranberry (Vaccinium macrocarpon Ait.) Composite Map Using Genotyping-by-Sequencing for Multi-pedigree Linkage mapping. G3 (Bethesda, Md.). 2017 Mar 01.

Abstract

The American cranberry (Vaccinium macrocarpon Ait.) is a recently domesticated, economically important, fruit crop with limited molecular resources. New genetic resources could accelerate genetic gain in cranberry through characterization of its genomic structure and by enabling molecular-assisted breeding strategies. To increase the availability of cranberry genomic resources, genotyping-by-sequencing (GBS) was used to discover and genotype thousands of single nucleotide polymorphisms (SNPs) within three inter-related cranberry full-sib populations. Additional simple sequence repeat (SSR) loci were added to the SNP datasets and used to construct bin maps for the parents of the populations, which were then merged to create the first high-density cranberry composite map containing 6073 markers (5437 SNPs and 636 SSRs) on 12 linkage groups (LGs) spanning 1124 cM. Interestingly, higher rates of recombination were observed in maternal than paternal gametes. The large number of markers in common (mean of 57.3) and the high degree of observed collinearity (mean Pair-wise Spearman Rank Correlations > 0.99) between the LGs of the parental maps demonstrates the utility of GBS in cranberry for identifying polymorphic SNP loci that are transferable between pedigrees and populations in future trait-association studies. Furthermore, the high-density of markers anchored within the component maps allowed identification of segregation distortion regions, placement of centromeres on each of the 12 LGs, and anchoring of genomic scaffolds. Collectively, the results represent an important contribution to the current understanding of cranberry genomic structure and to the availability of molecular tools for future genetic research and breeding efforts in cranberry.

Stocks
This publication contains information about 3 stocks:
Stock NameUniquenameType
CNJ04CNJ04population
CNJ02CNJ02population
[BGx(BLxNL)]95_x_ GH1x35-F1[BGx(BLxNL)]95_x_ GH1x35-F1population
Features
This publication contains information about 4,496 features:
Feature NameUniquenameType
scaffold_54259scaffold_54259genetic_marker
scaffold_63419scaffold_63419genetic_marker
scaffold_71150scaffold_71150genetic_marker
scaffold_71386scaffold_71386genetic_marker
scaffold_7191scaffold_7191genetic_marker
scaffold_84092scaffold_84092genetic_marker
scaffold_84992scaffold_84992genetic_marker
scaffold01187scaffold01187genetic_marker
scaffold_100190_220scaffold_100190_220genetic_marker
scaffold_100190_244scaffold_100190_244genetic_marker
scaffold_1002_800scaffold_1002_800genetic_marker
scaffold_100390_145scaffold_100390_145genetic_marker
scaffold_1004_5429scaffold_1004_5429genetic_marker
scaffold_10047_1755scaffold_10047_1755genetic_marker
scaffold_100544_222scaffold_100544_222genetic_marker
scaffold_10070_6536scaffold_10070_6536genetic_marker
scaffold_10074_6474scaffold_10074_6474genetic_marker
scaffold_10081_5658scaffold_10081_5658genetic_marker
scaffold_100864_719scaffold_100864_719genetic_marker
scaffold_100864_801scaffold_100864_801genetic_marker
scaffold_100864_878scaffold_100864_878genetic_marker
scaffold_100864_879scaffold_100864_879genetic_marker
scaffold_100880_380scaffold_100880_380genetic_marker
scaffold_10090_2222scaffold_10090_2222genetic_marker
scaffold_100975_707scaffold_100975_707genetic_marker

Pages

Properties
Additional details for this publication include:
Property NameValue
Publication ModelPrint-Electronic
ISSN2160-1836
eISSN2160-1836
Publication Date2017 Mar 01
Journal AbbreviationG3 (Bethesda)
PIIg3.116.037556
Elocation10.1534/g3.116.037556
DOI10.1534/g3.116.037556
CopyrightCopyright © 2017 Author et al.
LanguageEnglish
Language Abbreng
Publication TypeJournal Article
Journal CountryUnited States
Cross References
This publication is also available in the following databases:
DatabaseAccession
PMID: PubMedPMID:28250016