Construction of a High-Density American Cranberry (Vaccinium macrocarpon Ait.) Composite Map Using Genotyping-by-Sequencing for Multi-pedigree Linkage mapping

Publication Overview
TitleConstruction of a High-Density American Cranberry (Vaccinium macrocarpon Ait.) Composite Map Using Genotyping-by-Sequencing for Multi-pedigree Linkage mapping
AuthorsSchlautman B, Covarrubias-Pazaran G, Diaz-Garcia L, Iorizzo M, Polashock J, Grygleski E, Vorsa N, Zalapa J
TypeJournal Article
Journal NameG3 (Bethesda, Md.)
Year2017
CitationSchlautman B, Covarrubias-Pazaran G, Diaz-Garcia L, Iorizzo M, Polashock J, Grygleski E, Vorsa N, Zalapa J. Construction of a High-Density American Cranberry (Vaccinium macrocarpon Ait.) Composite Map Using Genotyping-by-Sequencing for Multi-pedigree Linkage mapping. G3 (Bethesda, Md.). 2017 Mar 01.

Abstract

The American cranberry (Vaccinium macrocarpon Ait.) is a recently domesticated, economically important, fruit crop with limited molecular resources. New genetic resources could accelerate genetic gain in cranberry through characterization of its genomic structure and by enabling molecular-assisted breeding strategies. To increase the availability of cranberry genomic resources, genotyping-by-sequencing (GBS) was used to discover and genotype thousands of single nucleotide polymorphisms (SNPs) within three inter-related cranberry full-sib populations. Additional simple sequence repeat (SSR) loci were added to the SNP datasets and used to construct bin maps for the parents of the populations, which were then merged to create the first high-density cranberry composite map containing 6073 markers (5437 SNPs and 636 SSRs) on 12 linkage groups (LGs) spanning 1124 cM. Interestingly, higher rates of recombination were observed in maternal than paternal gametes. The large number of markers in common (mean of 57.3) and the high degree of observed collinearity (mean Pair-wise Spearman Rank Correlations > 0.99) between the LGs of the parental maps demonstrates the utility of GBS in cranberry for identifying polymorphic SNP loci that are transferable between pedigrees and populations in future trait-association studies. Furthermore, the high-density of markers anchored within the component maps allowed identification of segregation distortion regions, placement of centromeres on each of the 12 LGs, and anchoring of genomic scaffolds. Collectively, the results represent an important contribution to the current understanding of cranberry genomic structure and to the availability of molecular tools for future genetic research and breeding efforts in cranberry.

Features
This publication contains information about 4,496 features:
Feature NameUniquenameType
scaffold_83934_790scaffold_83934_790genetic_marker
scaffold_83985_935scaffold_83985_935genetic_marker
scaffold_83985_952scaffold_83985_952genetic_marker
scaffold_84032_312scaffold_84032_312genetic_marker
scaffold_8410_3911scaffold_8410_3911genetic_marker
scaffold_84186_326scaffold_84186_326genetic_marker
scaffold_8420_6927scaffold_8420_6927genetic_marker
scaffold_8425_5569scaffold_8425_5569genetic_marker
scaffold_8425_5580scaffold_8425_5580genetic_marker
scaffold_8435_1079scaffold_8435_1079genetic_marker
scaffold_8435_1097scaffold_8435_1097genetic_marker
scaffold_8435_980scaffold_8435_980genetic_marker
scaffold_84361_181scaffold_84361_181genetic_marker
scaffold_84577_993scaffold_84577_993genetic_marker
scaffold_8464_1061scaffold_8464_1061genetic_marker
scaffold_84682_293scaffold_84682_293genetic_marker
scaffold_84794_1177scaffold_84794_1177genetic_marker
scaffold_848_1677scaffold_848_1677genetic_marker
scaffold_848_1678scaffold_848_1678genetic_marker
scaffold_84806_119scaffold_84806_119genetic_marker
scaffold_8503_4213scaffold_8503_4213genetic_marker
scaffold_85066_97scaffold_85066_97genetic_marker
scaffold_85207_796scaffold_85207_796genetic_marker
scaffold_85207_809scaffold_85207_809genetic_marker
scaffold_85207_835scaffold_85207_835genetic_marker

Pages

Stocks
This publication contains information about 3 stocks:
Stock NameUniquenameType
CNJ04CNJ04population
CNJ02CNJ02population
[BGx(BLxNL)]95_x_ GH1x35-F1[BGx(BLxNL)]95_x_ GH1x35-F1population
Properties
Additional details for this publication include:
Property NameValue
eISSN2160-1836
Publication Date2017 Mar 01
Journal AbbreviationG3 (Bethesda)
PIIg3.116.037556
Publication ModelPrint-Electronic
ISSN2160-1836
Elocation10.1534/g3.116.037556
DOI10.1534/g3.116.037556
CopyrightCopyright © 2017 Author et al.
LanguageEnglish
Language Abbreng
Publication TypeJournal Article
Journal CountryUnited States