Construction of a High-Density American Cranberry (Vaccinium macrocarpon Ait.) Composite Map Using Genotyping-by-Sequencing for Multi-pedigree Linkage mapping

Publication Overview
TitleConstruction of a High-Density American Cranberry (Vaccinium macrocarpon Ait.) Composite Map Using Genotyping-by-Sequencing for Multi-pedigree Linkage mapping
AuthorsSchlautman B, Covarrubias-Pazaran G, Diaz-Garcia L, Iorizzo M, Polashock J, Grygleski E, Vorsa N, Zalapa J
TypeJournal Article
Journal NameG3 (Bethesda, Md.)
Year2017
CitationSchlautman B, Covarrubias-Pazaran G, Diaz-Garcia L, Iorizzo M, Polashock J, Grygleski E, Vorsa N, Zalapa J. Construction of a High-Density American Cranberry (Vaccinium macrocarpon Ait.) Composite Map Using Genotyping-by-Sequencing for Multi-pedigree Linkage mapping. G3 (Bethesda, Md.). 2017 Mar 01.

Abstract

The American cranberry (Vaccinium macrocarpon Ait.) is a recently domesticated, economically important, fruit crop with limited molecular resources. New genetic resources could accelerate genetic gain in cranberry through characterization of its genomic structure and by enabling molecular-assisted breeding strategies. To increase the availability of cranberry genomic resources, genotyping-by-sequencing (GBS) was used to discover and genotype thousands of single nucleotide polymorphisms (SNPs) within three inter-related cranberry full-sib populations. Additional simple sequence repeat (SSR) loci were added to the SNP datasets and used to construct bin maps for the parents of the populations, which were then merged to create the first high-density cranberry composite map containing 6073 markers (5437 SNPs and 636 SSRs) on 12 linkage groups (LGs) spanning 1124 cM. Interestingly, higher rates of recombination were observed in maternal than paternal gametes. The large number of markers in common (mean of 57.3) and the high degree of observed collinearity (mean Pair-wise Spearman Rank Correlations > 0.99) between the LGs of the parental maps demonstrates the utility of GBS in cranberry for identifying polymorphic SNP loci that are transferable between pedigrees and populations in future trait-association studies. Furthermore, the high-density of markers anchored within the component maps allowed identification of segregation distortion regions, placement of centromeres on each of the 12 LGs, and anchoring of genomic scaffolds. Collectively, the results represent an important contribution to the current understanding of cranberry genomic structure and to the availability of molecular tools for future genetic research and breeding efforts in cranberry.

Features
This publication contains information about 4,496 features:
Feature NameUniquenameType
scaffold_9533_833scaffold_9533_833genetic_marker
scaffold_95332_586scaffold_95332_586genetic_marker
scaffold_95560_861scaffold_95560_861genetic_marker
scaffold_95615_240scaffold_95615_240genetic_marker
scaffold_95650_374scaffold_95650_374genetic_marker
scaffold_95680_602scaffold_95680_602genetic_marker
scaffold_9578_4647scaffold_9578_4647genetic_marker
scaffold_95857_229scaffold_95857_229genetic_marker
scaffold_95857_239scaffold_95857_239genetic_marker
scaffold_9588_2766scaffold_9588_2766genetic_marker
scaffold_9595_7371scaffold_9595_7371genetic_marker
scaffold_95983_79scaffold_95983_79genetic_marker
scaffold_9605_3252scaffold_9605_3252genetic_marker
scaffold_9628_2399scaffold_9628_2399genetic_marker
scaffold_9628_2504scaffold_9628_2504genetic_marker
scaffold_96341_1045scaffold_96341_1045genetic_marker
scaffold_9644_6723scaffold_9644_6723genetic_marker
scaffold_96752_138scaffold_96752_138genetic_marker
scaffold_96859_244scaffold_96859_244genetic_marker
scaffold_96859_271scaffold_96859_271genetic_marker
scaffold_96899_633scaffold_96899_633genetic_marker
scaffold_97035_859scaffold_97035_859genetic_marker
scaffold_97161_155scaffold_97161_155genetic_marker
scaffold_97161_203scaffold_97161_203genetic_marker
scaffold_97161_242scaffold_97161_242genetic_marker

Pages

Stocks
This publication contains information about 3 stocks:
Stock NameUniquenameType
CNJ04CNJ04population
CNJ02CNJ02population
[BGx(BLxNL)]95_x_ GH1x35-F1[BGx(BLxNL)]95_x_ GH1x35-F1population
Properties
Additional details for this publication include:
Property NameValue
eISSN2160-1836
Publication Date2017 Mar 01
Journal AbbreviationG3 (Bethesda)
PIIg3.116.037556
Publication ModelPrint-Electronic
ISSN2160-1836
Elocation10.1534/g3.116.037556
DOI10.1534/g3.116.037556
CopyrightCopyright © 2017 Author et al.
LanguageEnglish
Language Abbreng
Publication TypeJournal Article
Journal CountryUnited States