Construction of a High-Density American Cranberry (Vaccinium macrocarpon Ait.) Composite Map Using Genotyping-by-Sequencing for Multi-pedigree Linkage mapping

Publication Overview
TitleConstruction of a High-Density American Cranberry (Vaccinium macrocarpon Ait.) Composite Map Using Genotyping-by-Sequencing for Multi-pedigree Linkage mapping
AuthorsSchlautman B, Covarrubias-Pazaran G, Diaz-Garcia L, Iorizzo M, Polashock J, Grygleski E, Vorsa N, Zalapa J
TypeJournal Article
Journal NameG3 (Bethesda, Md.)
Year2017
CitationSchlautman B, Covarrubias-Pazaran G, Diaz-Garcia L, Iorizzo M, Polashock J, Grygleski E, Vorsa N, Zalapa J. Construction of a High-Density American Cranberry (Vaccinium macrocarpon Ait.) Composite Map Using Genotyping-by-Sequencing for Multi-pedigree Linkage mapping. G3 (Bethesda, Md.). 2017 Mar 01.

Abstract

The American cranberry (Vaccinium macrocarpon Ait.) is a recently domesticated, economically important, fruit crop with limited molecular resources. New genetic resources could accelerate genetic gain in cranberry through characterization of its genomic structure and by enabling molecular-assisted breeding strategies. To increase the availability of cranberry genomic resources, genotyping-by-sequencing (GBS) was used to discover and genotype thousands of single nucleotide polymorphisms (SNPs) within three inter-related cranberry full-sib populations. Additional simple sequence repeat (SSR) loci were added to the SNP datasets and used to construct bin maps for the parents of the populations, which were then merged to create the first high-density cranberry composite map containing 6073 markers (5437 SNPs and 636 SSRs) on 12 linkage groups (LGs) spanning 1124 cM. Interestingly, higher rates of recombination were observed in maternal than paternal gametes. The large number of markers in common (mean of 57.3) and the high degree of observed collinearity (mean Pair-wise Spearman Rank Correlations > 0.99) between the LGs of the parental maps demonstrates the utility of GBS in cranberry for identifying polymorphic SNP loci that are transferable between pedigrees and populations in future trait-association studies. Furthermore, the high-density of markers anchored within the component maps allowed identification of segregation distortion regions, placement of centromeres on each of the 12 LGs, and anchoring of genomic scaffolds. Collectively, the results represent an important contribution to the current understanding of cranberry genomic structure and to the availability of molecular tools for future genetic research and breeding efforts in cranberry.

Stocks
This publication contains information about 3 stocks:
Stock NameUniquenameType
CNJ04CNJ04population
CNJ02CNJ02population
[BGx(BLxNL)]95_x_ GH1x35-F1[BGx(BLxNL)]95_x_ GH1x35-F1population
Features
This publication contains information about 4,496 features:
Feature NameUniquenameType
scaffold_13716_1275scaffold_13716_1275genetic_marker
scaffold_137170_64scaffold_137170_64genetic_marker
scaffold_137339_70scaffold_137339_70genetic_marker
scaffold_137350_108scaffold_137350_108genetic_marker
scaffold_1374_4261scaffold_1374_4261genetic_marker
scaffold_13767_3213scaffold_13767_3213genetic_marker
scaffold_137684_323scaffold_137684_323genetic_marker
scaffold_137684_431scaffold_137684_431genetic_marker
scaffold_137684_441scaffold_137684_441genetic_marker
scaffold_13789_1054scaffold_13789_1054genetic_marker
scaffold_13790_6288scaffold_13790_6288genetic_marker
scaffold_138_10975scaffold_138_10975genetic_marker
scaffold_138_11061scaffold_138_11061genetic_marker
scaffold_13813_4093scaffold_13813_4093genetic_marker
scaffold_13813_4139scaffold_13813_4139genetic_marker
scaffold_13815_1292scaffold_13815_1292genetic_marker
scaffold_138284_165scaffold_138284_165genetic_marker
scaffold_138284_173scaffold_138284_173genetic_marker
scaffold_138284_184scaffold_138284_184genetic_marker
scaffold_138284_80scaffold_138284_80genetic_marker
scaffold_138340_430scaffold_138340_430genetic_marker
scaffold_13859_433scaffold_13859_433genetic_marker
scaffold_13859_435scaffold_13859_435genetic_marker
scaffold_13859_520scaffold_13859_520genetic_marker
scaffold_13859_555scaffold_13859_555genetic_marker

Pages

Properties
Additional details for this publication include:
Property NameValue
Publication ModelPrint-Electronic
ISSN2160-1836
eISSN2160-1836
Publication Date2017 Mar 01
Journal AbbreviationG3 (Bethesda)
PIIg3.116.037556
Elocation10.1534/g3.116.037556
DOI10.1534/g3.116.037556
CopyrightCopyright © 2017 Author et al.
LanguageEnglish
Language Abbreng
Publication TypeJournal Article
Journal CountryUnited States
Cross References
This publication is also available in the following databases:
DatabaseAccession
PMID: PubMedPMID:28250016