Exploiting genotyping by sequencing to characterize the genomic structure of the American cranberry through high-density linkage mapping

Publication Overview
TitleExploiting genotyping by sequencing to characterize the genomic structure of the American cranberry through high-density linkage mapping
AuthorsCovarrubias-Pazaran G, Diaz-Garcia L, Schlautman B, Deutsch J, Salazar W, Hernandez-Ochoa M, Grygleski E, Steffan S, Iorizzo M, Polashock J, Vorsa N, Zalapa J
TypeJournal Article
Journal NameBMC genomics
Volume17
Issue1
Year2016
Page(s)451
CitationCovarrubias-Pazaran G, Diaz-Garcia L, Schlautman B, Deutsch J, Salazar W, Hernandez-Ochoa M, Grygleski E, Steffan S, Iorizzo M, Polashock J, Vorsa N, Zalapa J. Exploiting genotyping by sequencing to characterize the genomic structure of the American cranberry through high-density linkage mapping. BMC genomics. 2016; 17(1):451.

Abstract

BACKGROUND
The application of genotyping by sequencing (GBS) approaches, combined with data imputation methodologies, is narrowing the genetic knowledge gap between major and understudied, minor crops. GBS is an excellent tool to characterize the genomic structure of recently domesticated (~200 years) and understudied species, such as cranberry (Vaccinium macrocarpon Ait.), by generating large numbers of markers for genomic studies such as genetic mapping.

RESULTS
We identified 10842 potentially mappable single nucleotide polymorphisms (SNPs) in a cranberry pseudo-testcross population wherein 5477 SNPs and 211 short sequence repeats (SSRs) were used to construct a high density linkage map in cranberry of which a total of 4849 markers were mapped. Recombination frequency, linkage disequilibrium (LD), and segregation distortion at the genomic level in the parental and integrated linkage maps were characterized for first time in cranberry. SSR markers, used as the backbone in the map, revealed high collinearity with previously published linkage maps. The 4849 point map consisted of twelve linkage groups spanning 1112 cM, which anchored 2381 nuclear scaffolds accounting for ~13 Mb of the estimated 470 Mb cranberry genome. Bin mapping identified 592 and 672 unique bins in the parentals and a total of 1676 unique marker positions in the integrated map. Synteny analyses comparing the order of anchored cranberry scaffolds to their homologous positions in kiwifruit, grape, and coffee genomes provided initial evidence of homology between cranberry and closely related species.

CONCLUSIONS
GBS data was used to rapidly saturate the cranberry genome with markers in a pseudo-testcross population. Collinearity between the present saturated genetic map and previous cranberry SSR maps suggests that the SNP locations represent accurate marker order and chromosome structure of the cranberry genome. SNPs greatly improved current marker genome coverage, which allowed for genome-wide structure investigations such as segregation distortion, recombination, linkage disequilibrium, and synteny analyses. In the future, GBS can be used to accelerate cranberry molecular breeding through QTL mapping and genome-wide association studies (GWAS).

Features
This publication contains information about 1,617 features:
Feature NameUniquenameType
uneak_34649039uneak_34649039genetic_marker
uneak_34692042uneak_34692042genetic_marker
uneak_34782034uneak_34782034genetic_marker
uneak_34865053uneak_34865053genetic_marker
uneak_3518047uneak_3518047genetic_marker
uneak_35201030uneak_35201030genetic_marker
uneak_35250045uneak_35250045genetic_marker
uneak_35382036uneak_35382036genetic_marker
uneak_354030uneak_354030genetic_marker
uneak_35464034uneak_35464034genetic_marker
uneak_35602038uneak_35602038genetic_marker
uneak_35662057uneak_35662057genetic_marker
uneak_35663053uneak_35663053genetic_marker
uneak_35664013uneak_35664013genetic_marker
uneak_35733050uneak_35733050genetic_marker
uneak_35758016uneak_35758016genetic_marker
uneak_35823041uneak_35823041genetic_marker
uneak_35909017uneak_35909017genetic_marker
uneak_35945027uneak_35945027genetic_marker
uneak_3598037uneak_3598037genetic_marker
uneak_36209037uneak_36209037genetic_marker
uneak_36270057uneak_36270057genetic_marker
uneak_3631028uneak_3631028genetic_marker
uneak_36321027uneak_36321027genetic_marker
uneak_36338023uneak_36338023genetic_marker

Pages

Featuremaps
This publication contains information about 1 maps:
Map Name
Cranberry-[BGx(BLxNL)]95_x_ GH1x35-F1
Stocks
This publication contains information about 4 stocks:
Stock NameUniquenameType
#35#35accession
[BGx(BLxNL)]95[BGx(BLxNL)]95accession
[BGx(BLxNL)]95_x_ GH1x35-F1[BGx(BLxNL)]95_x_ GH1x35-F1population
GH1_x_#35GH1_x_#35population
Properties
Additional details for this publication include:
Property NameValue
Publication ModelElectronic
ISSN1471-2164
eISSN1471-2164
Publication Date2016
Journal AbbreviationBMC Genomics
DOI10.1186/s12864-016-2802-3
Elocation10.1186/s12864-016-2802-3
Journal CountryEngland
LanguageEnglish
Language Abbreng
Publication TypeJournal Article